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1. Introduction  

There exists a wide range of motivations for modeling gun interior ballistics.  Computer 
modeling can provide a fast and economical means of evaluating the performance potential for 
new gun concepts or configurations, or alternatively, the use of new propellant compositions or 
geometries in existing guns.  Modeling also provides an ideal approach to automation of 
parametric analysis and design optimization of gun and ammunition characteristics.  On a 
somewhat more physically sophisticated level, high-level models can be used to address the 
causes and possible solutions for undesirable ballistic behaviors.  Specifically, past efforts (1–3) 
employing state-of-the-art interior ballistic codes in conjunction with transparent (plastic) 
chambered gun-chamber simulators have facilitated the detailed comparison of simulated and 
measured results, with emphasis on identifying causes and controls for flamespreading anomalies 
and ensuing deleterious pressure waves in large caliber guns. 

With many interior ballistic models of varying complexity, both in terms of underlying physical 
representations and numerical features, selection of the appropriate model to address a given 
problem of interest can be of critical importance, both in terms of the level of difficulty 
associated with the model used and the value of the results so obtained.  In this report, we will 
consider simulation of a sample, generic gun/propelling charge configuration using a range of 
interior ballistic models, assessing the type and level of problems addressable within the physical 
basis of each, the significant differences in the requirement for input data, and the computational 
burdens and numerical difficulties associated with each. 

2. A Range of Modeling Approaches 

Three levels of interior ballistic models, representative of broad classes characterized by various 
levels of physics underpinning the representations, are considered in this report.  Specifically, the 
models employed are the IBHVG2 lumped-parameter interior ballistic code; the XKTC one-
dimensional (1-D) (with area change), two-phase flow interior ballistic code; and the NGEN3 
multidimensional, two-phase flow interior ballistic code.   

Briefly, IBHVG2 (4) provides a simple but useful lumped-parameter representation of the 
interior ballistic cycle, embodying such assumptions as uniform and simultaneous ignition of the 
entire propellant charge, with combustion assumed to take place in a smoothly-varying, well-
stirred mixture, the burning rate being determined by the instantaneous, space-mean chamber 
pressure.  An assumed, longitudinal pressure gradient is superimposed on the solution at each 
instant in time to appropriately reduce the pressure on the base of the projectile.  While an 
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excellent tool for estimating overall performance of a gun, the study of ignition-induced pressure 
waves (a major concern of this study) is clearly outside the physical scope of this model.   

Next, the XKTC code (5) provides a quasi-1-D, macroscopic (with respect to individual grains), 
two-phase description of flow in the gun chamber, with the conservation laws formulated to 
neglect the effects of viscosity and heat conduction in the gas phase.  Most important, however, 
gas and solid phases are coupled through heat transfer, combustion, and interphase drag, these 
processes being modeled using empirical correlations that relate the microphenomena to the 
average flow properties described by the governing equations.  The igniter is either modeled 
explicitly or treated as a predetermined mass-injection profile, and flamespreading follows 
primarily according to convection, until the ignition temperature is reached and combustion 
follows at a rate determined by the local pressure.  Formulated as a 1-D-with-area-change 
representation, XKTC provides a first-level capability for treating the dynamics of the axial 
pressure field and its potential for causing potentially damaging overpressures. 

Finally the NGEN3 code (6–8) is a multidimensional, multiphase computational fluid dynamics 
(CFD) code that incorporates three-dimensional (3-D) continuum equations along with auxiliary 
relations into a modular code structure.  On a sufficiently small scale of resolution in both space 
and time, the components of the interior ballistic flow are represented by the 3-D balance 
equations for a multicomponent reacting mixture describing the conservation of mass, 
momentum, and energy.  A macroscopic representation of the flow is adopted using these 
equations derived by a formal averaging technique applied to the microscopic flow.  These 
equations require a number of constitutive laws for closure including state equations, 
intergranular stresses, and interphase transfer (similar to those employed in the XKTC code).  
The numerical representation of these equations as well as the numerical solution thereof is 
based on a finite-volume discretization and high-order accurate, conservative numerical solution 
schemes.  The spatial values of the dependent variables at each time step are determined by a 
numerical integration method denoted the Continuum Flow Solver (CFS), which treats the 
continuous phase and certain of the discrete phases in an Eulerian fashion.  The Flux-Corrected 
Transport scheme (9) is a suitable basis for the CFS since the method is explicit and has been 
shown to adapt easily to massively parallel computer systems.  The discrete phases are treated by 
a Lagrangian formulation, denoted the Large Particle Integrator (LPI), which tracks the particles 
(described below) explicitly and smoothes discontinuities associated with boundaries between 
propellants yielding a nearly continuous distribution of porosity over the entire domain.  The 
manner of coupling between the CFS and the LPI is through the attribution of properties (e.g., 
porosity and mass generation).  The size of the grid as well as the number of Lagrangian particles 
is user prescribed.  The solid propellant is modeled using Lagrange particles that regress, 
produce combustion product gases, and respond to gasdynamic and physical forces.  Individual 
grains, sticks, slab, and wrap layers are not resolved; rather, each propellant medium is 
distributed within a specified region in the gun chamber.  The constitutive laws that describe 
interphase drag, form-function, etc., assigned to these various media, determine preferred 
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gas flow paths through the media (e.g., radial for disks and axial for sticks) and responses of the 
media to gasdynamic forces.  Media regions that are encased in impermeable boundaries, which 
only yield to gasdynamic flow after a prescribed pressure differential and/or surface temperature 
is reached, act as rigid bodies within the chamber.  The use of computational particles to 
represent the propellant charge permits a host of other modeling features that enhanced the 
representation of charge details (8). 

3. A Generic Problem Treated at All Three Levels 

To elucidate the benefits and burdens associated with using higher-level interior ballistic models, 
we address a generic gun/propelling charge configuration based loosely on a 155-mm howitzer 
firing a single-bag, top zone propelling charge previously employed by the U.S. Army.  In short, 
a 46.7-kg projectile is launched by an 11.8-kg charge of granular M30A1 propellant from a  
155-mm bore cannon with a 20.1-L chamber volume and 5.1 m of travel.  Figure 1 displays the 
configurational representations available with each of the codes. 

 

 

Figure 1.  Generic artillery charge and representations provided by the three interior 
ballistic models. 

SIMPLIFIED ACTUAL CONFIGURATION

IBHVG2 (“0-D”) 

XKTC (1-D) 

NGEN (2-D) 
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4. IBHVG2 Simulation 

Consistent with the lumped-parameter description assuming a uniformly distributed, 
instantaneously and uniformly ignited propellant charge, as previously described, input data 
required for an IBHVG2 simulation can be as simple as gun chamber volume and tube diameter; 
projectile mass and travel; barrel resistance profile; igniter mass and thermochemical properties; 
and main charge propellant mass, dimensions, thermochemical properties, and burning rates.  No 
information on the specific location of the propellant charge or the manner in which it is ignited 
(other than just the initial pressurization supplied by the igniter, assumed to be all burned at time 
zero, with all surfaces of the main propellant charge ignited) is admitted, with modeling results 
correspondingly limited.  Figure 2 presents pressure-time profiles for chamber and projectile 
base for the single solution definable by this set of input data.  The curves are necessarily smooth 
and reflect none of the details of flamespreading and possible pressure-wave formation.  
Predicted performance is 796 m/s with a peak chamber pressure of 323 MPa. 
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Figure 2.  Pressure-vs.-time curves at breech and projectile base as predicted by IBHGV2. 
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5. XKTC Simulations 

As depicted in figure 1, XKTC allows assignment of the axial delimiters of the propellant charge 
within the gun chamber, as well as a tabular description of ignition system output, capable of 
influencing axial flamespreading and pressurization within the gun chamber.  In addition, the  
1-D-with-area-change representation provides a first level of recognition of the chambrage and 
tapering of the gun chamber.  Input data beyond those required for IBHVG2 thus include 
chamber dimensions, axial boundaries of the propellant charge, and thermal properties, including 
an ignition temperature, for the propellant, as well as parameters describing propellant bed 
compressibility.  These last two categories of input are often unavailable for specific propellants 
and estimated based on related data.   

Figures 3 and 4 present XKTC results for two charge-loading conditions, as displayed in figure 1 
(termed minimum and maximum standoff from the breech face) and two ignition system output 
profiles (located either at the rear or the forward end of the propellant charge).  We note the 
interplay of the initial distribution of axial ullage and the site of ignition on the ensuing path of 
flamespreading and pressurization on the development of potentially deleterious pressure waves.  
Indeed, it is easy to imagine that initial conditions might lead to large, longitudinal pressure 
waves, accompanying solid-phase (unburned propellant) motion, possible grain fracture upon 
impact against the breech or projectile base, generation of unintended burning surface, and 
damaging overpressures.  This sequence of events is, in fact, the prescription for breechblows 
(10, 11).  Predicted velocities for these conditions range from 799 to 810 m/s, with peak 
pressures from 316 to 330 MPa and initial negative differential pressures from 22 to 67 MPa. 

One must remember, however, that the 1-D representation prohibits consideration of the 
influence of radial flow on these processes, either to exacerbate or mitigate undesirable ignition-
phase dynamics.  In particular, the potential for equilibration of longitudinal pressures early in 
the cycle via the high permeability path radially external to the propellant package is beyond 
treatment by such codes. 

6. NGEN3 Simulations 

The primary feature to be exploited through application of the NGEN3 code was clearly its 
capability to provide a multidimensional representation of the problem:  both two-dimensional  
(2-D) axisymmetric and fully 3-D treatments, as shown once again in figure 1.  Three sets of 
calculations were thus performed to investigate the role of multidimensional flow for the given 
generic problem:  (1) a direct transfer of the XKTC databases for minimum and maximum  
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Figure 3.  Flamespreading profiles for four charge location/ignition profile 
combinations as predicted by XKTC. 
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Figure 4.  Pressure-vs.-time data for four charge location/ignition profile combinations as predicted by 
XKTC. 
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standoff, with the propellant assumed to occupy the full radial extent of the chamber from rear to 
forward boundaries of the charge; (2) these same two configurations but with the diameter of the 
charges reduced to about 90% of the average diameter of the chamber; and (3) the same 
propellant charge package (reduced diameter charge at minimum standoff), but this time, lying 
on the bottom of the chamber as in real life rather than the simplified version with co-axial 
propellant charge and gun chamber.   

Figures 5–7 display pressure-vs.-time and pressure-difference-vs.-time data for these three sets 
of calculations: the first virtually duplicates the XKTC rear ignition results; the second reveals 
the equilibrating effect with respect to longitudinal pressure waves of the high permeability path 
external to the charge (a reduction in the initial negative differential pressure of 48 to 13 MPa for 
the minimum standoff configuration, but only from 78 to 65 MPa for maximum standoff, where 
the lack of forward ullage limits the effectiveness of flow in the high permeability region of 
circumferential ullage); and the final of these figures demonstrates that three-dimensionality 
provides only a minor perturbation to the longitudinal pressure fields calculated in the second 
set.  However, when we examine propellant temperature contours and velocity vectors for 
axisymmetric and fully 3-D representations of the minimum standoff, rear ignition, reduced 
diameter configurations (figures 8 and 9), recognizable differences in the early flow and path of 
flamespreading become evident.  Such differences, while likely inconsequential with respect to 
evolution of the overall pressurization of the gun chamber and net interior ballistic performance, 
could indeed alter transient inputs to the projectile base, perhaps exciting undesirable material 
responses in the projectile body or payload.  Indeed, the coupling of such interior ballistic results 
from the NGEN3 code to various projectile material response codes is the subject of related 
studies (12–14).  

 

   

Figure 5.  Pressure-vs.-time data for minimum and maximum standoff, rear ignition, full-bore charges as 
predicted by NGEN3. 
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Figure 6.  Pressure-vs.-time data for minimum and maximum standoff, rear ignition, reduced diameter 
charges (axisymmetric representation) as predicted by NGEN3. 

 

 

Figure 7.  (a) Pressure-vs.-time data for minimum standoff, rear ignition, reduced diameter charge 
(fully three-dimensional representation) as predicted by NGEN3 and (b) direct comparison 
of with these results to those of the axisymmetric representation of figure 6. 

 

Figure 8.  Propellant temperature contours and selected velocity vectors for minimum standoff, rear 
ignition, reduced diameter charges (axisymmetric representations) as predicted by NGEN3. 
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Figure 9.  Propellant temperature contours and selected velocity vectors for minimum standoff, rear 
ignition, reduced diameter charges (fully 3-D representation) as predicted by NGEN3. 

 

7. Conclusions and Recommendations 

Let us now make some specific recommendations regarding the use of interior ballistic models in 
each of these three categories.  Lumped-parameter models are appropriate, and indeed usually 
the best choice, for the following types of analyses:  overall gun envelope performance limits, 
determination of maximum performance benefits from various propellant formulations or 
configurations, grain geometry optimization, determination of the influence of temperature-
dependant burning rates on performance, performance sensitivity analyses, and the study of 
idealized interior ballistic concepts (e.g., delayed ignition of grain perforations).  Computer runs 
usually take at most a few seconds per in-bore trajectory on a personal computer. 
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The use of multiphase flow codes becomes necessary when ignition and flamespreading are 
important to the problem of interest:  typically environments characterized by substantial 
longitudinal pressure waves, with possible deleterious effects, such as performance excursions 
and even breechblows.  Moreover, such codes are required when the primary interest is simply 
the sensitivity of performance, including pressure waves, to ignition stimulus and location; 
propellant geometry, combustion, and mechanical property characteristics; and overall  
charge-loading density and location.  When the ignition stimulus and charge distribution are 
consistent with a 1-D representation, codes such as XKTC are appropriate.  Even with the added 
complexity of such codes, computer times of well under a minute on a personal computer are 
typical.  Successful application of such codes to propelling charge design and diagnostics 
problems throughout recent decades is widely documented (15–17). 

Multidimensional, multiphase flow codes must be used, however, when either the ignition 
stimulus or the initial distribution of the propellant in the gun chamber cannot reasonably be 
assumed to be adequately treated as 1-D (or 1-D with area change).  In particular, when the early 
flow of ignition or propellant gases cannot be expected to flow primarily in the longitudinal 
direction through the propellant bed or regions of primarily axial ullage, a 1-D code will be 
unable to capture critical two-phase flow processes whereby alternate paths may significantly 
alter the structure of flow.  Should the propellant charge be initially contained in an inert or 
combustible package that allows longitudinal flow both within the charge and external to it in a 
region of circumferential ullage surrounding the charge, the path of flamespreading and the 
overall development of pressure waves can be substantially altered, in a fashion possibly 
critically dependent on the persistence of such ullage as determined by the strength and 
permeability of the case itself.  Only multidimensional codes such as NGEN3 are capable of 
addressing such issues (2, 18).  Moreover, we need to reiterate that the success of current efforts 
in the community to couple interior ballistic codes to projectile dynamic response codes for 
transient structural analysis will be highly dependent on the level of representation provided by 
the interior ballistic code which drives the overall analysis—a multidimensional, multiphase flow 
code may well be required to provide a full description of the transient, multidimensional, gas, 
and solid-phase inputs to the projectile base (14).  Burdens associated with the use of multiphase 
flow interior ballistic codes fall into two major categories.  The first is the requirement for 
specific input data not typically available to the charge developer (e.g., propellant bed rheology, 
needed regardless of the dimensionality of representation, and case permeability and strength 
characteristics, required to take full advantage of multidimensional representation of cased 
charges).  The second, of course, is the computational burden.  The NGEN simulations reported 
herein were run on an SGI Octane2 with dual 400-MHz processors and 8 Gb of memory.  The  
2-D runs required about 3 hr and the 3-D about 55 hr, with modest meshes appropriate to this 
notional charge configuration (for 2-D: 2015 grid cells in the Eulerian mesh and 375 particles in 
the Lagrangian mesh with ten-times larger meshes for 3-D).  Again, documentation on successful 
application of this code is abundant (18–20). 
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